
FLTK 1.3.0 Tutorial

This a tutorial can be used by the absolute FLTK beginner. In the course of the tutorial
the most common widgets will be explained and you will gain a good overview of the FLTK
toolkit. The examples have been kept as short and simple as possible so it will not take a
lot of time to understand them.

I ported FLTK to DOS and took the screenshots in DOS. The examples will work without
any changes on any platform FLTK can be used for.

Contents

1. Introduction

2. The FLTK structure

3. Installation of the FLTK toolkit

4. The first program

5. The button widget

6. Callback functions

7. Input and Output boxes

8. The editor widget

9. The browser widget

10. The menubar widget

11. Toolbar and drop-down list

12. A dialog window with radio buttons

13. Displaying images

14. Grouping widgets in Tabs

15. Handling mouse events part1

16. Handling mouse events part2

17. Displaying the events generated by FLTK

18. The tree widget

19. References

1. Introduction

FLTK shall stand for Fast Light ToolKit and is a GUI written in C++ for C++ programs. It
can be used on Linux, Windows, Apple Mac and DOS. FLTK has lower memory
requirements than other toolkits and can be linked as a static library with an application. It
can also be compiled as a shared library too.

FLTK has been in development over many years and the currently latest version is 1.3.0.
There had been a version 2.0 before but unfortunately this branch never got out of alpha
and development of that has been canceled now in favor of version 1.3.0. So 1.3.0 is the
version any new development should be based on.

2. The FLTK structure

Being written in C++ FLTK defines a class for every widget. GUI toolkits usually refer to all
sorts of objects, like buttons, input boxes, scrollbars etc as widgets.

The base class for all widgets is the Fl_Widget class. All widgets are subclasses from the
Fl_Widget class or again subclasses from these subclasses.

This are some of the direct subclasses of Fl_Widget: Fl_Box, Fl_Button, Fl_Group,
Fl_Input_, Fl_Menu_, Fl_Progress and Fl_Timer.

A subclass of Fl_Group again is Fl_Window, a class you will be using in every program.

An example of a long tree of subclasses is FL_Radio_Round_Button. As shown below this
button type is a subclass of Fl_Round_Button which is a subclass of Fl_Light_Button
which is again a subclass of Fl_Button.

The FL_Radio_Round_Button class has access to all methods or functions defined in one
of the classes it is a subclass of. You will have to check in the documentation whether any
of these classes has a method which does what you want to achieve.

There is also the FL global (static) class containing state information and global methods
for the current application.

In addition several non-class functions and symbols are provided, they are grouped into

header files with lower-case names.

3. Installation of the FLTK toolkit

a.) Linux

download the latest source, unpack it and then do configure,make,install. Then compile
your program e.g. as:
"fltk-config' --compile example.cxx"
or if you use images:
"fltk-config --use-images --compile example.cxx"

Further details can be found in the FLTK manual here:
http://www.fltk.org/doc-1.3/basics.html There is a section called "Compiling Programs with
Standard Compilers" further below on that page.
You can also read the README.Unix.txt file that is included in the FLTK source code
package. This also covers using FLTK with the Code::Blocks IDE.

b.) Windows

There are a number of alternatives to develop FLTK programs on Windows. The FLTK site
just has the source code so you either compile FLTK on Windows or download binaries
from the net as described below.

b1.) DEV-CPP

This is an IDE which uses MinGW to generate C and C++ programs on Windows. You can
download it here: http://www.bloodshed.net/dev/devcpp.html

Then you can download a "devpak" of FLTK 1.3.0 here:
http://nanox-microwindows-nxlib-fltk-for-dos.googlecode.com/files/fltk-130-1gp.DevPak

After starting DEV-CPP select "Tools" from the menu and "Package Manager". In there
select "Install" and open the downloaded DevPak to install it.

Then open a new project (File->New->Project), select the "GUI" tab and in there select
"FLTK". After a few questions how to name the project and the program file this will come
up with the default FLTK program which you can build and run by entering "F9".

b2.) Code::Blocks

This is another good IDE using MinGW. If you open a new project, you can select the
FLTK icon in there. After that you will have enter the location of the FLTK files. You can
download the binaries here: http://code.google.com/p/fltkwinbin/downloads/list
and then put them into a directory of your choice. Then enter that path into the
Code::Blocks' input box. Code::Blocks just needs the path to the root FLTK directory where
bin, include, lib, share and test are in.

You can then select file->new->empty file and save that as main. Then cut and past one of
the examples in this tutorial into the edit window and save the file.

http://www.fltk.org/doc-1.3/basics.html
http://code.google.com/p/fltkwinbin/downloads/list
http://nanox-microwindows-nxlib-fltk-for-dos.googlecode.com/files/fltk-130-1gp.DevPak
http://www.bloodshed.net/dev/devcpp.html

Then right-click on the project, select "Build options" and add the following libraries to the
linker settings:
libcomctl32.a, libcomdlg32.a, libole32.a,libgdi32.a and libuuid.a. You find these libraries in
the "CodeBlocks\MinGW\lib\" directory.

After this select Build->Run or CTRL-F10 that should build the project and run it.

b3.) Compile FLTK on Windows with MinGW.

Both DEV-CPP and Code::Blocks install MinGW on your PC. If you install MinGW after
you already have installed one of these IDEs Windows will point to the new MinGW
directory and and that causes problems with DEV-CPP.

Details how to compile FLTK with MinGW are in the file README.MSWindows.txt which is
included in the FLTK source code package.
It also described in there how to use FLTK with Cygwin.

You can also compile FLTK on Windows with Code::Blocks if you follow this tutorial:
http://gintasdx.althirius-studios.com/2011/08/tutorial-codeblocks-with-fltk.html

b4.) Microsoft Visual C++

This is covered in the file README.MSWindows.txt.

Further details can also be found here:
http://research.cs.wisc.edu/graphics/Courses/559-f2009/Main/Tutorial1

c.) Apple OS X

Please read the file README.OSX.txt which is included in the FLTK source code package.

d.) DOS

Download the DJGPP package from
http://code.google.com/p/nanox-microwindows-nxlib-fltk-for-dos/downloads/list ,
edit the start.bat file in there to your paths. The required FLTK libraries are already
included in the DJGPP package but can be downloaded from that site separately as well.

You can compile the examples either with this line (observe the line wrap here):

gpp -g -I/djgpp/include -o example.exe example.cxx -L/djgpp/lib -lfltk -lNX11 -lnano-X
-lfreetype

For the examples which load an image you have to add additional parameters to this line:

gpp -g -I/djgpp/include -o ex13.exe ex13.cxx -L/djgpp/lib -lfltk_images -lfltk -lNX11 -lnano-X
-lfreetype -ljpeg -lpng -lz

Or you enter a shell with "sh" and use the "fltk-config" script:

sh-2.04$ 'fltk-config' --compile example.cxx
sh-2.04$ 'fltk-config' --use-images --compile example.cxx

http://code.google.com/p/nanox-microwindows-nxlib-fltk-for-dos/downloads/list
http://research.cs.wisc.edu/graphics/Courses/559-f2009/Main/Tutorial1
http://gintasdx.althirius-studios.com/2011/08/tutorial-codeblocks-with-fltk.html

4. The first program

This tutorial starts with very simple examples. Some readers may consider them too
simple but those may read these parts more quickly.

Our first program just opens a window with a title. You can terminate the program by
closing the window with your mouse or pressing the ESC key.

To run this or any other example please copy the lines below and paste them into the
editor that you will use for compiling the code.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>

int main()
{

// Create a window - width, height, label (=title)
 Fl_Window win(400, 400,"FLTK Tutorial - Example 1");
 // Display the window

win.show();
// Run and return

 return Fl::run();
}

All programs must include the file <FL/FL.H> to include the FLTK global class FL. In
addition the program must include a header file for each FLTK class it uses, in our case it
is just Fl_Window, a subclass of Fl_Group.

The statement:
Fl_Window win(400, 400,"FLTK Tutorial - Example 1");

creates a new object of the Fl_Window class called "win". The call also defines the size of
the window to be created and the title string.

Then there is a call the "show" method of the Fl_Window class to display the window:
win.show();

Finally every FLTK program has to have the Fl::run() statement:
return Fl::run();

This enters the FLTK event loop. The program now waits for events, like mouse clicks or
keystrokes to happen and act upon them. When the window is closed or the ESC key
pressed, this function will return.

5. The button widget

Here are two examples that add a button to the window made in the example above. The
first one extends the example above while the other defines a subclass of FL_Window
which gives the code a completely different structure.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Button.H>

int main(int argc, char **argv)
{
 // Create a window - width, height, label (=title)
 Fl_Window *win = new Fl_Window(340,180,"FLTK Tutorial - Example 2");

// Set color of window to white
win->color(FL_WHITE);

 // Begin adding children to this window
 win->begin();
 //Create a button - x , y , width, height, label
 Fl_Button *button1 = new Fl_Button(25,15,140,40,"OK");

// Set color of button to red
button1->color(FL_RED);

 // Stop adding children to this window
 win->end();
 // Display the window
 win->show();
 // Run and return
 return Fl::run();
}

Since we are using a new widget here, the button widget, we have to include a header file
for that class first.

The statement:
 Fl_Window *win = new Fl_Window(340,180,"FLTK Tutorial - Example 2");
creates a pointer to the new window object "win". This is different to the first example and
we will have to use "win->show();" now instead of "win.show();" as before.

Then we use a "set" method to turn the color of our window to white:
win->color(FL_WHITE);

FLTK usually has a corresponding "get" method for each "set" method. Here "Fl_color c =
win->color();" would return the current window color in "c".

Then there is:
win->begin();

that tells FLTK to start a group of children for our "win" object. This statement could be

omitted and FLTK will add this implicitly then.

Following that we create a pointer to a new button object:
 Fl_Button *button1 = new Fl_Button(25,15,140,40,"OK");
and make a "set" statement to set its color to red.

The statement
win->end();

will tell FLTK that we are done defining the children for the "win" object. The defined group
will be set to the parent of the window, in this case to NULL because "win" does not have a
parent.

The following statements will cause the window to be displayed and enter the FLTK event
loop.

So far we have not defined classes in the examples. To show how this can be done using
FLTK classes and inheritance we rewrite the example above:

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Button.H>

class MyWindow : public Fl_Window
{
public:

MyWindow(int width, int height, const char* title=0) :
Fl_Window(width,height,title)
{
// Set color of window to white
color(FL_WHITE);
// Begin adding children to this window
begin();

//Create a button - x , y , width, height, label
Fl_Button *button1 = new Fl_Button(25,15,140,40,"OK");
// Set color of button to red
button1->color(FL_RED);

 // Stop adding children to this window
 end();
 // Display the window
 show();
 }
};

int main()
{
 // Create a window with our new class - width, height, label (=title)
 MyWindow win(340,180,"FLTK Tutorial - Example 2++");
 // Run and return
 return Fl::run();
}

Here the statement
class MyWindow : public Fl_Window

creates a class called MyWindow which is derived from the Fl_Window class. In the
constructor of this class we define the color of the window, the button as a child of the
window and display the window. Since the "this" pointer is implicit, you do not need a
pointer in front of the begin(), end() and show() statements.

In the main function we just create a new object of the MyWindow class called "win" and
then enter the FLTK event loop.

6. Callback functions

Now we will add a callback function which will be called by FLTK as soon as the button is
clicked. This callback function will then change the color of the button.

There is no screenshot provided since it looks like the one in the previous example.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Button.H>

void button1_cb(Fl_Widget* buttonptr){
if (buttonptr->color() == FL_BLUE) {
buttonptr->color(FL_RED); //toggle
}else {
buttonptr->color(FL_BLUE);//toggle
}

}

int main(int argc, char **argv)
{
 // Create a window - width, height, label (=title)
 Fl_Window *win = new Fl_Window(340,180,"FLTK Tutorial - Example 3");

win->color(FL_WHITE);
 // Begin adding children to this window
 win->begin();
 //Create a button - x , y , width, height, label
 Fl_Button *button1 = new Fl_Button(25,15,140,40,"Click me!");

button1->color(FL_RED);
//register callback function with this button
button1->callback(button1_cb);

 // Stop adding children to this window
 win->end();
 // Display the window
 win->show();
 // Run and return
 return Fl::run();
}

The statement:
button1->callback(button1_cb);

defines that the callback "button1_cb" will be called when the user clicks on it.

This function is defined as
void button1_cb(Fl_Widget* buttonptr)

Please observe that a pointer to the Fl_Widget class is passed and not to Fl_Button. This
way we can only use methods defined in Fl_Widget. For this example this is fine since we
will only be using the "color" method defined in Fl_Widget. If we want to use methods
defined in the Fl_Button class we will have to cast the buttonptr to a Fl_Button class e.g:

Fl_Button* b = (Fl_Button*)buttonptr;

The rest of the function checks if the button color is blue and if yes turns it to red and vice
versa.

7. Input and Output boxes

This example will display an input and an output widget. The text you enter in the input box
will be copied into the output box and the label of the input box will be changed.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Input.H>
#include <FL/Fl_Output.H>

Fl_Input input1(90, 10, 180, 20, "Input : ");
Fl_Output output1(90, 40, 180, 20, "Output : ");

static void cb_input1(Fl_Input*, void* userdata) {
 input1.label((const char*)userdata);
 output1.value(input1.value());
 input1.value(""); //clear again
}

int main(int argc, char **argv) {

 Fl_Window win(300, 90, "Example for Input and Output boxes");
 win.begin();
 win.add(input1);

input1.callback((Fl_Callback*)cb_input1,(void *)"Enter next:");
 input1.when(FL_WHEN_RELEASE | FL_WHEN_ENTER_KEY);

win.add(output1);
win.end();

 win.show();
 return Fl::run();
}

Here input1 and output1 are defined as globals so they can be accessed in the input1
callback function.

In the main function we define a window object called "win" and add the input1 and
output1 widgets to that using the "win.add()" statements.

In the next line:

 input1.callback((Fl_Callback*)cb_input1,(void *)"Enter next:");

the callback function "cb_input1" is set to be called if an event regarding the input1 widget
occurs.

As an example we have used the second parameter of the callback function here to pass a

void pointer to the string "Enter next:". This parameter is called the "userdata" parameter.
Here the pointer will be used as label text in the callback function.

Following that using the ".when()" method it is defined what event shall trigger the callback
function. This will be the Enter key and when the input widget is released.

In the callback function the label of the input1 widget is changed to the userdata string.
The value of the input widget, i.e. the text entered into this widget, is copied into the output
widget und the input widget is cleared again after that.

8. The editor widget

This program shows how to use the editor widget included in FLTK. This example is taken
from Greg Ercolanos FLTK cheat sheet page at: http://seriss.com/people/erco/fltk/

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Text_Editor.H>

int main() {
 Fl_Window *win = new Fl_Window(400, 200);
 Fl_Text_Buffer *buff = new Fl_Text_Buffer();
 Fl_Text_Editor *disp = new Fl_Text_Editor(20, 20, 360, 160, "Editor Window");
 disp->buffer(buff);
 win->resizable(*disp);
 win->show();
 buff->text("FLTK Tutorial"); //add initial text here if required
 return(Fl::run());
}

Although the editor widget is comprised of a lot of FLTK code, it is simple to use.

First there are pointers created to the new window object "win", the new buffer object "buff"
and the new editor widget "disp". Then the buffer object is attached to the editor object
using the "buffer" method the Fl_Text_Editor widget has inherited from the FL_Display
widget:

disp->buffer(buff);

With the "text()" method we can move a string into the buffer.

http://seriss.com/people/erco/fltk/

9. The browser widget

The browser widget displays an array of strings line by line in a window and lets the user
select items from this list. Here the browser is initialized with three lines. Whenever one of
these lines is clicked an additional line is added stating what line was selected.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Browser.H>

void browser_cb(Fl_Widget *w) {
 Fl_Browser *b = (Fl_Browser*)w; //cast to get access to Browser methods

// retrieve selected item from browser
int index = b->value();
// add text to browser using the retrieved index number
if (index == 1) {

b->add("You selected Line1");
} else if (index == 2) {

b->add("You selected Line2");
} else if (index == 3) {
 b->add("You selected Line3");
}

}

int main() {
 Fl_Window *win = new Fl_Window(300,200,"Browser Example");
 Fl_Browser *b = new Fl_Browser(10,40,win->w()-20, win->h()-50);
 b->type(FL_MULTI_BROWSER);
 b->add("Line1");
 b->add("Line2");
 b->add("Line3");
 b->callback(browser_cb);
 win->show();
 return(Fl::run());
}

In the main() function we first create pointers to a new window and browser object. For the
browser object we use the "get" functions "win->w()" and "win->h()" to retrieve the size of
the window "win" to fit it into that. Then we add three lines into the browser object and
register its callback function as "browser_cb".

In the callback function we first cast the Fl_Widget pointer to a Fl_Browser pointer to be
able to use the value method of this widget. With the statement:

int index = b->value();

we can retrieve which of the three lines the user has clicked last and thus selected it. The
index of this line is used to add additional lines to the browser specifying which line had
been selected on each click.

10. The menubar widget

This example opens a window with a small menubar. The menu items selected will be
displayed in the window title.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Menu_Bar.H>

Fl_Window* win;

void Menu_CB_Open(Fl_Widget* w,void*) {win->label("Open selected");}
void Menu_CB_Save(Fl_Widget* w,void*) {win->label("Save selected");}
void Menu_CB_Quit(Fl_Widget* w,void*) {win->label("Quit selected");}
void Menu_CB_Help(Fl_Widget* w,void*) {win->label("Help selected");}

int main() {
// Open the application window and menu bar with callbacks

 win = new Fl_Window(420, 280);
win->color(FL_WHITE);

 Fl_Menu_Bar menubar(0, 0, win->w(), 25);
 menubar.add("&File/&Open", 0, Menu_CB_Open);

menubar.add("&File/&Save", 0, Menu_CB_Save);
menubar.add("&File/&Quit", 0, Menu_CB_Quit);

 menubar.add("&Help", 0, Menu_CB_Help);
 win->end();
 win->show();

return(Fl::run());
}

To keep the example short, "win" is defined as a global Fl_Window object pointer so we
can use it directly in the callback functions.

Here a Fl_Menu_Bar object called "menubar" is added to our main window. There are four
menubar items defined. The "&" character defines the shortcut key for this menu item. The
first three statements define the "File" menu with the subitems "Open", "Save" and "Quit".
The "Help" item has no submenu items. Each statement defines the callback function that
shall be called if the user clicks on the menu item. Here these callback functions change
the label (title) of the main window to show which menu item had been selected.

11. Toolbar and drop-down list

Many applications place a toolbar with several icons below a menu bar. In this example not
only icons but also a drop down list is placed in such a toolbar.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Button.H>
#include <FL/Fl_Pixmap.H>
#include <FL/Fl_Input.H>
#include <FL/Fl_Group.H>
#include <FL/Fl_Choice.H>
#include <FL/fl_ask.H>
#include <FL/Fl_Menu_Bar.H>

#define FONT_SERIF 1
#define FONT_SANS_SERIF 2
#define FONT_MONOSPACE 3

static const char *save_xpm[] = {
"16 16 9 1",
" c None",
". c #000000",
"+ c #0000FF",
"@ c #000080",
"# c #A0A0A0",
"$ c #0000C0",
"% c #FFFFFF",
"& c #C0C0FF",
"* c #DCDCDC",
"................",
".+@##########@+.",
".$@%%%%%%%%%%@$.",
".+@%%%%%%%%%%@+.",
".+@%########%@+.",
".+@%%%%%%%%%%@+.",
".+@%########%@+.",
".+@&%%%%%%%%&@+.",
".++@@@@@@@@@@++.",
".++++++++++++++.",
".++$......@@$++.",
".++.******.+@++.",
".++.*@+***.+@++.",

".++.*@+***.+@++.",
".@+.******.+@++.",
""};

class Toolbar : public Fl_Group {
public:

Fl_Button *save1;
Fl_Button *save2;

 Fl_Pixmap *p_save;

Fl_Choice *font_group;
Fl_Menu_Item *font_group_items;

static void cb_save(Fl_Widget*, void*);
static void cb_fonts(Fl_Widget*, void*);

Toolbar(int Xpos, int Ypos, int Width, int Height);
};

void Toolbar::cb_save(Fl_Widget *w, void *data){
fl_alert("Save Button %d pressed!",(int)data);}

void Toolbar::cb_fonts(Fl_Widget *w, void *data){
fl_alert("Font number %d selected!",(int)data);}

Toolbar::Toolbar(int Xpos, int Ypos, int Width, int Height) :
Fl_Group(Xpos, Ypos, Width, Height)

{
 box(FL_UP_BOX);

 Ypos += 2; Height -= 4; Xpos += 3; Width = Height;
 int i;

 save1 = new Fl_Button(Xpos, Ypos, Width, Height); Xpos += Width + 5;
 save2 = new Fl_Button(Xpos, Ypos, Width, Height); Xpos += Width + 5;
 font_group = new Fl_Choice(Xpos, Ypos, 110, Height); Xpos += 111;

 p_save = new Fl_Pixmap(save_xpm);
 save1->image(p_save);
 save2->image(p_save);
 save1->tooltip("Save file1");
 save1->callback(cb_save,(void*)1);
 save2->tooltip("Save file2");
 save2->callback(cb_save,(void*)2);

 font_group_items = new Fl_Menu_Item[4];
 for (i = 0; i < 4; i++) font_group_items[i].text = NULL;
 font_group_items->add("Serif", 0, cb_fonts, (void*) FONT_SERIF, 0);
 font_group_items->add("Sans-Serif", 0, cb_fonts,(void*) FONT_SANS_SERIF, 0);
 font_group_items->add("Monospace", 0, cb_fonts, (void*) FONT_MONOSPACE, 0);
 font_group->menu(font_group_items);
}

int main()
{
 Fl_Window win(500, 300,"FLTK Toolbar Example");
 win.color(FL_WHITE);
 win.begin();

Fl_Menu_Bar menubar(0, 0, win.w(), 25);
menubar.add("&File", 0, 0);
menubar.add("&Edit", 0, 0);

 Toolbar tool(0,26,win.w(),30);
tool.clear_visible_focus(); //just use mouse, no TABs

 win.end();
 win.show();
 return Fl::run();
}

In the main window first there is defined a menubar and below that an object of the Toolbar
class which is defined in this program. When this Toolbar object is created its position and
size is specified.

The constructor will first make a box of the size of the toolbar. Then two icons and a drop-
down list widget are placed in this box. The icons are defined as an XPM image which
again is specified at the top of the code. An XPM image can e.g. be created on Windows
with the xpmedit program: http://www.jland.org/swat/xpmedit/ . To save space the same
icon is used here twice in the example.

Then an FL-Pixmap object of the XPM image is made in the constructor and using image()
it is set as the image for both buttons. Further for each button a tooltip and a callback
function is specified.

Following that the drop-down list is defined. The items of this list are specified as menu
items. These items have the same callback function, just different userdata is passed.
After calling menu() the items are shown in the drop-down list on the screen.

The callback functions use the "fl_alert" function to display the userdata passed and
indicate which button or item has been selected by the user. The "fl_alert" function can
take the message text in an sprintf-like format.

FLTK features a number of common dialog functions which are documented in the
"modules" section of the FLTK documentation. These are defined with lower-case letter
names.

12. A dialog window with radio buttons

This example shows how to open a dialog window when a menu item is selected. It is
often necessary to define a window where the user can make a number of selections.

http://www.jland.org/swat/xpmedit/

#include <FL/Fl.H>
#include <FL/Fl_Group.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Button.H>
#include <FL/Fl_Round_Button.H>
#include <FL/Fl_Menu_Bar.H>

class Dialog_Window : public Fl_Window
{
public:

int status;
int radio;
static Dialog_Window *dw_this;
static void cb_button(Fl_Widget *w, void *d);
static void cb_radio(Fl_Widget *b, void *d);

Dialog_Window(int xpos, int ypos, int width, int height,
const char* title=0) : Fl_Window(xpos,ypos,width,height,title)

{
dw_this = this;
color(FL_WHITE);
// Begin adding children to this window
begin();
Fl_Group* rb_group = new Fl_Group(15, 10, 105, 105);
rb_group->box(FL_UP_FRAME);

 { Fl_Round_Button* rb1 = new Fl_Round_Button(20, 15, 70, 30, "&Coffee");
 rb1->type(102);
 rb1->down_box(FL_ROUND_DOWN_BOX);
 rb1->callback(cb_radio,(void*)1);
 }
 { Fl_Round_Button* rb2 = new Fl_Round_Button(20, 45, 70, 30, "&Espresso");
 rb2->type(102);
 rb2->down_box(FL_ROUND_DOWN_BOX);

rb2->callback(cb_radio,(void*)2);
 }

 { Fl_Round_Button* rb3 = new Fl_Round_Button(20, 75, 70, 30,
"Ca&ppucino");

 rb3->type(102);
 rb3->down_box(FL_ROUND_DOWN_BOX);
 rb3->callback(cb_radio,(void*)3);
 }

rb_group->end();

Fl_Button *button_ok = new Fl_Button(10,150,80,40,"OK");
Fl_Button *button_c = new Fl_Button(110,150,80,40,"Cancel");
button_ok->callback(cb_button,(void*)1);
button_c->callback(cb_button,(void*)2);

end();
set_modal();

 show();
 }
};

Dialog_Window *Dialog_Window::dw_this = NULL;

void Dialog_Window::cb_radio(Fl_Widget *b, void *d) {
char msg[64];
dw_this->radio=(int)d;
sprintf(msg, "Radio Button: %d", dw_this->radio);
dw_this->label(msg);

}

void Dialog_Window::cb_button(Fl_Widget *w, void *d)

{
dw_this->hide();
dw_this->status = (int)d;

}

void cb_file(Fl_Widget *w, void *data){
Fl_Window* parent=(Fl_Window*)data;
parent->label("Please enter data now");

Dialog_Window* dw = new Dialog_Window(parent->x()+20,parent->y()+20,
200, 200, NULL);

}

int main()
{
 Fl_Window win(300, 250,"FLTK Dialog Window Example");

win.color(FL_WHITE);
 win.begin();

Fl_Menu_Bar menubar(0, 0, win.w(), 25);
 menubar.add("&Coffee", 0, cb_file,(void*)&win);

win.end();
win.show();
return Fl::run();

}

In this example the main window just has a menu bar with one item to call the dialog
window. The menu item passes a pointer to the main window as userdata in the callback.
The callback can then change the label of the main window and read its position so the
dialog window is created at a fixed position relative to the main window no matter where
this currently is on the screen. The callback makes an object of the Dialog_window class
called "dw". This class defines the dialog window called Dialog_window.

The constructor of this class opens the dialog window and defines a group with three radio
buttons or round buttons. There is a box drawn around the group of radio buttons.
Also there are an OK and a Cancel button defined in the dialog window. The dialog
window is opened "modal" so user input is directed to this window only while it is
displayed.

The callback functions of each button are passed the number of the button in the userdata
parameter. Thes callback function makes a msg string with this number and writes it to the
title of the dialog window. It also writes the number to the public integer variable "radio" in
the Dialog_window object.

The OK and Cancel button callbacks hide the dialog window and write a status value into
the public variable of the Dialog_window object.

This example also shows how to make the "this" pointer of the Dialog_window dw object
available in the entire program. The "this" pointer of this object is written into the static
variable "dw_this" which is also initialized outside the class definition and therefore can be
accessed from anywhere in the program.

13. Displaying images

The first example displays a PNG image in a window, the second displays a JPG image in
a smaller window and lets you scroll the image using scrollbars. Both examples were
developed by Greg Ercolano.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Shared_Image.H>
#include <FL/Fl_PNG_Image.H>
#include <FL/Fl_Box.H>

int main() {
 fl_register_images(); // initialize image lib
 Fl_Window win(500,400); // make a window
 Fl_Box box(10,10,500-20,400-20); // widget that will contain image
 Fl_PNG_Image png("jolly.png"); // load png image into ram
 box.image(png); // attach png image to box
 win.show();
 return(Fl::run());
}

The included comments explain the example already. There is a new widget used here:
Fl_Box. This box is not visible since when you attach the image to this object you see the
image in the defined box.

When creating the Fl_PNG_Image object the image file is already read from disk because
the constructor of this class loads the named PNG image from the given png filename.

This is the second example:

#include <stdio.h>
#include <stdlib.h>
#include <FL/Fl.H>
#include <FL/Fl_Shared_Image.H>
#include <FL/Fl_Double_Window.H>
#include <FL/Fl_Scroll.H>
#include <FL/Fl_JPEG_Image.H>
#include <FL/Fl_Box.H>

#define JPGFILE "jolly.jpg"

int main() {
 fl_register_images();
 Fl_Double_Window win(520,400,"Example image viewer with scrollbars");
 Fl_Scroll scr(0,0,520,400);
 Fl_JPEG_Image jpg(JPGFILE);
 if (jpg.h() == 0) { perror(JPGFILE); exit(1); } // error check
 Fl_Box box(0,0,jpg.w(),jpg.h());
 box.image(jpg);
 win.resizable(win);
 win.show();
 return(Fl::run());
}

In this example the Fl_Scroll widget is used. This is a container widget and will let
scrollbars appear if its child widget, here the JPEG image, is larger than the size of this
scroll widget. In this program the size of the scroll widget is set to the size of the main
window.

The main window is defined using the Fl_Double_Window subclass. This subclass will be
using a double-buffered window. If possible this window widget will use the X double
buffering extension (Xdbe). If not, it will draw the window data into an off-screen pixmap,
and then copy it to the on-screen window.

You can take any PNG or JPEG image. I made Google image search for "Jolly Roger" and
converted the result into a PNG and a JPEG file for this example.

14. Grouping widgets in Tabs

This is another example from Greg Ercolano showing how TABs work in FLTK. There are
two TABs which group two different sets of buttons.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Tabs.H>
#include <FL/Fl_Group.H>
#include <FL/Fl_Button.H>

int main(int argc, char *argv[]) {
 Fl_Window *win = new Fl_Window(400,200,"Tabs Example");
 {
 Fl_Tabs *tabs = new Fl_Tabs(10,10,400-20,200-20);

 {
 // A tab
 Fl_Group *aaa = new Fl_Group(10,35,400-20,200-45,"A-Buttons");
 {
 Fl_Button *b1 = new Fl_Button(50, 60,90,25,"Button A1");

b1->color(88+1);
 Fl_Button *b2 = new Fl_Button(50, 90,90,25,"Button A2");

b2->color(88+2);
 Fl_Button *b3 = new Fl_Button(50,120,90,25,"Button A3");

b3->color(88+3);
 }
 aaa->end();

 // B tab
 Fl_Group *bbb = new Fl_Group(10,35,400-10,200-35,"B-Buttons");
 {
 Fl_Button *b1 = new Fl_Button(50,60,90,25,"Button B1");

b1->color(88+1);
 Fl_Button *b2 = new Fl_Button(150,60,90,25,"Button B2");

b2->color(88+3);
 Fl_Button *b3 = new Fl_Button(250,60,90,25,"Button B3");

b3->color(88+5);
 }
 bbb->end();
 }
 tabs->end();
 }
 win->end();
 win->show();
 return(Fl::run());
}

In the examples we have used so far we declared a window object and our buttons and
other widgets were in the group of this window object. Here the window has one child
which is the TABs widget. This widget has two Fl_Group object groups as its childen, the
group "aaa" and "bbb". Each of these groups has three buttons as its children again.

The TABs widget will just display the group belonging to the currently selected TAB.

15. Handling mouse events part1

In this program it is monitored whether the mouse is over the box in the middle of the
window. If yes, the box will turn red. Keyboard events are also retrieved and displayed in
the title bar of the window.

#include <FL/Fl_Window.H>
#include <FL/Fl_Double_Window.H>
#include <FL/Fl.H>
#include <FL/Fl_Box.H>

Fl_Window* win;

class EventWindow: public Fl_Box
{

private:
int handle_key(int e,int key);

public:
EventWindow(int t, int l, int width, int height);
int handle(int e);

};

EventWindow::EventWindow(int t, int l, int width, int height)
:Fl_Box(FL_UP_BOX, t, l, width, height, "")
{ labelfont(FL_ITALIC);

labelsize(24);
labeltype(FL_SHADOW_LABEL);
label("OnMouseOver");
Fl::focus(this);

}

int EventWindow::handle(int e)
{

switch(e) {
case FL_ENTER:

color (FL_RED);
labelcolor(FL_BLACK);
damage(1);
return 1;

case FL_LEAVE:
color(FL_GRAY);
labelcolor(FL_BLACK);
damage(1);
return 1;

case FL_KEYDOWN:
return handle_key(e,Fl::event_key());

default:
return Fl_Box::handle(e);

};
}

int EventWindow::handle_key(int e,int key)
{

char labeltext[20];
sprintf(labeltext,"Key entered: %c ",key);
win->label(labeltext);
return 1;

}

int main()
{

win = new Fl_Window(300, 200);
win->color(FL_BLUE);
EventWindow ewin(20, 20, 260, 160);
ewin.show();
win->end();
win->show();
return Fl::run();

}

In the main() function a new window object is created and this time there is not a button or
a box object as before but a new window object called "ewin" is added as the child. This
window is created using the class EventWindow which is defined in this example as a
subclass of the Fl_Window class. The constructor of this class will write the text
"OnMouseOver" into this window.

This class also has a method that overwrites the Fl_Widget::handle() virtual method. This
way all the events are sent to this handle() method by FLTK. The method checks for three
different events and returns a one for those to indicate to FLTK that these events are
handled by this function: FL_ENTER, FL_LEAVE and FL_KEYDOWN. A FL_ENTER event
occurs when the mouse is over the window created by the "ewin" object while a
FL_LEAVE event occurs when the mouse has been moved outside this window. These
events are used here to change the color of this window.

When a FL_KEYDOWN event occured, the function handle_key() will be called which
displays the key value in the title bar of the main window.

Retrieving keyboard events is usually not necessary with FLTK since you will be using
input boxes etc. for keyboard input which do not require you to keep track of every
keystroke.

16. Handling mouse events part2

The example is somewhat similar to a paint program. When you click and drag the mouse,
a line will be painted following the mouse movement. When you click once a line will be
drawn to the point of the next click with the LEFT mouse button. If you click with the
RIGHT mouse button a frame will be drawn instead.

This example is based on one posted by Ian MacArthur. Drawing with FLTK is usually
done inside the virtual draw() method. You then implement your own version of this
method for drawing that overwrites FLTK's draw() virtual method. Whenever draw() is
called it will draw the screen again as defined in this method.

For incremental drawing you better draw into an offscreen buffer that is copied to the
screen whenever the draw() method is called. Since FLTK does not store the screen
contents these will be erased when the window is iconized and restored. The contents in

the offscreen buffer will be preserved though. This example does incremental drawing and
shows the use of such an offscreen buffer.

#include <Fl/Fl.H>
#include <FL/Fl_Double_Window.H>
#include <Fl/Fl_Box.H>
#include <Fl/fl_draw.H>

#define window_size 400
static Fl_Double_Window *main_window = 0; // the main app window
static Fl_Offscreen offscreen_buffer = 0; // the offscreen surface

/***/
/* This class provides a view to copy the offscreen surface to */
class canvas : public Fl_Box {
 void draw();
 int handle(int event);
public:
 canvas(int x, int y, int w, int h);
};

/***/
/* Constructor */
canvas::canvas(int x, int y, int w, int h) : Fl_Box(x,y,w,h){
} // Constructor

/***/
void canvas::draw() {
 if(offscreen_buffer) { // offscreen exists
 // blit the required view from the offscreen onto the box

 fl_copy_offscreen(x(), y(), w(), h(), offscreen_buffer, 0,0);
}

 else { // create the offscreen
 main_window->make_current(); //ensures suitable graphic context
 offscreen_buffer = fl_create_offscreen(w(), h());

if(!offscreen_buffer){fprintf(stderr,"Failed buffer creation"); exit(1);}
 fl_begin_offscreen(offscreen_buffer); /* Open the offscreen context */
 fl_color(FL_WHITE);
 fl_rectf(0, 0, w(), h());

fl_end_offscreen(); /* close the offscreen context */
/* init screen with offscreen buffer */
fl_copy_offscreen(x(), y(), w(), h(), offscreen_buffer, 0,0);

 }
} // draw method
/***/
int canvas::handle(int event) {
 static char labeltext[100];
 int button,x,y;
 int retvalue = 0;
 static int x_old,y_old;
 static int push1st=0;

 if (!offscreen_buffer) return 1;
 retvalue = Fl_Box::handle(event);
 switch (event) {
 case FL_PUSH:
 case FL_DRAG:
 button = Fl::event_button();
 x = Fl::event_x();
 y = Fl::event_y();
 };

 switch (button) {

 case 1: // Left button
 sprintf(labeltext,"Last mouse button= Left | Mouse at %d,%d now",x,y);
 window()->label(labeltext);

 retvalue = 1;
 break;

 case 3: // Right button
 sprintf(labeltext,"Last mouse button= Right | Mouse at %d,%d now",x,y);
 window()->label(labeltext);
 retvalue = 1;
 break;

 }

 switch(event) {
 case FL_PUSH:
 if (push1st == 0) {
 x_old = x;
 y_old = y;
 push1st = 1;
 break;
 } else {
 push1st = 0;
 /* Open the offscreen context for drawing */
 fl_begin_offscreen(offscreen_buffer);
 if (button==1){ //left mouse button

 fl_color(FL_RED);
 fl_line(x_old,y_old,x,y);

 } else { //right mouse button
 fl_draw_box(FL_BORDER_FRAME,x_old,y_old,(x-x_old),

(y-y_old),FL_BLUE);
 }

 fl_end_offscreen(); /* close the offscreen context */
 redraw();
 }
 case FL_DRAG:

 {push1st=0; //clear if dragging
 /* Open the offscreen context for drawing */
 fl_begin_offscreen(offscreen_buffer);
 fl_color(FL_BLACK);
 fl_point(x,y);
 fl_end_offscreen(); // close the offscreen context
 redraw();}
 break;

default:
 redraw();
 break;

 }
 return retvalue;
} // handle

/***/
int main (int argc, char **argv) {
 main_window = new Fl_Double_Window(window_size, window_size,

 "Drawing with mouse example");
 main_window->begin();
 // a view of the offscreen, inside the main window
 static canvas *os_box = new canvas(5,5,(window_size-10),(window_size-10));
 main_window->end();
 main_window->resizable(os_box);
 main_window->show(argc, argv);

 return Fl::run();
} // main

A new window class called canvas is defined in this example as a subclass of Fl_Box. This
defines the area that will be used for drawing. A new object of this canvas class is created
as a child widget of the main_window in the main() function.

The canvas class also defines a handle() method which overwrites the Fl_Widget::handle()
virtual method. This way all the events are sent to the canvas handle() method by FLTK.
This method checks for two different mouse events and returns a one for those to indicate
to FLTK that they are handled by this function: FL_PUSH and FL_DRAG. If one of these
events is received, this method will write into the title of the window which mouse button
has been clicked last and what the current position of the mouse is.

Then, if the event is a FL_DRAG it will draw a pixel at the current mouse position. If the
event is a FL_PUSH, just the mouse position will be stored. On a second FL_PUSH event
it depends whether the left or the right mouse button has been clicked. If the left mouse
button was clicked, a line will be drawn from the position of the first click to the current
mouse position. If the click was done with the right mouse button, a box will be drawn
instead of the line. The drawing to the offscreen buffer has to be done after a call to
fl_begin_offscreen() and end with a call to fl_end_offscreen().

The draw method just copies the offscreen buffer to the screen. When it is called for the
first time it will use fl_create_offscreen() to allocate the offscreen buffer and then use
fl_rectf() to clear the buffer to white. When the buffer is drawn to the screen it will turn the
drawing area to white. Just to ensure we have a suitable graphic context to base the
offscreen on the main_window is made current.

17. Displaying the events generated by FLTK

This example is based on the one given by Robert Arkiletian in his tutorial. There are two
buttons defined in the window which will cause events when the mouse moves over them
or clicks them, also keyboard events etc. will be displayed in a scrolling FLTK browser
window. The callback functions defined for the buttons are called when the buttons are
clicked or the letters 'a' or 'b' are entered.

The size of the example could be reduced by using the new fl_eventnames array in FLTK
version 1.3.0.

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Browser.H>
#include <FL/Fl_Button.H>
#include <FL/names.h>

Fl_Window *win;
Fl_Browser *b;

class MyButton : public Fl_Button
{
 static int count;
public:
 char linetext[100];

 MyButton(int x,int y,int w,int h,const char*l=0)
 :Fl_Button(x,y,w,h,l) {}

 int handle(int e) {
 int ret = Fl_Button::handle(e);
 sprintf(linetext,"Button %s got event: %s, returns: %d ", \

label(),fl_eventnames[e],ret);
b->add(linetext);
b->bottomline(32000); //always display the last line

 return(ret);
 }
};

int MyButton::count=0;

void but_a_cb(Fl_Widget* w, void* v){
 win->label("Button A callback!");
}

void but_b_cb(Fl_Widget* w, void* v){
 win->label("Button B callback!");
}

int main()
{
 win= new Fl_Window(530,350,"FLTK events example");
 win->begin();

 b = new Fl_Browser(140,20,win->w()-160, win->h()-50);
 b->type(FL_MULTI_BROWSER);

 MyButton but_a(10,20,100,25,"A");
 but_a.color(FL_BLUE);
 but_a.shortcut('a');
 but_a.callback(but_a_cb);

 MyButton but_b(10,60,100,25,"B");
 but_b.color(FL_GREEN);
 but_b.shortcut('b');
 but_b.callback(but_b_cb);

 win->end();
 win->show();
 return(Fl::run());

}

In the main() function a new window object is created and a multi browser widget plus two
buttons are added as children. The browser widget will list the events generated by FLTK
on the screen. For each button a callback function is defined which will display a message
in the window's title bar when clicked or when selected by a shortcut key. Shortcut keys
are just the letters 'a' and 'b' here, not an ALT- or CTRL- combination.

To create the button objects a new class has been defined called "MyButton" which is a
subclass of the Fl_Button class. All that this class does is to overwrite the
Fl_Widget::handle() virtual method. This way all the events are sent to this handle()
method by FLTK and can then be displayed in the browser window. As you can see in the
screenshot, some events are sent to both buttons. If the handle() function would return a
one, the event would be considered handled by FLTK and not be send to other widgets to
give these a chance to process the event.

18. The tree widget

There is a new widget in FLTK 1.3.0 developed by Greg Ercolano. It is the tree widget
which lets you design file explorer style windows.

The following example allows to select one or more items in the tree by clicking on them.
Then by clicking on the "Copy selected" button the selected items will be added to the
browser window on the right.

You can also select a single group and by using the "Select group" button select all the
items which belong to this group. The items will also be selected when the group display is
closed.

By clicking on the "Show pathname" button a message window appears specifying the

path of the selected item. Finally the "Deselect all" button removes all selections.

#include <FL/Fl.H>
#include <FL/Fl_Double_Window.H>
#include <FL/Fl_Tree.H>
#include <FL/Fl_Button.H>
#include <FL/Fl_Browser.H>
#include <FL/fl_message.H>

Fl_Double_Window* win = new Fl_Double_Window(645, 414,"Tree widget example");
Fl_Tree* tree = new Fl_Tree(25, 25, 275, 260);
Fl_Browser *b;

/**
 Assign user icons to the items
*/
void AssignUserIcons() {
 static const char *L_folder_xpm[] = {
 "11 11 3 1",
 ". c None",
 "x c #d8d833",
 "@ c #808011",
 "...........",
 ".....@@@@..",
 "....@xxxx@.",
 "@@@@@xxxx@@",
 "@xxxxxxxxx@",
 "@xxxxxxxxx@",
 "@xxxxxxxxx@",
 "@xxxxxxxxx@",
 "@xxxxxxxxx@",
 "@xxxxxxxxx@",
 "@@@@@@@@@@@"};
 static Fl_Pixmap L_folderpixmap(L_folder_xpm);

 static const char *L_document_xpm[] = {
 "11 11 3 1",
 ". c None",
 "x c #d8d8f8",
 "@ c #202060",
 ".@@@@@@@@@.",
 ".@xxxxxxx@.",
 ".@xxxxxxx@.",
 ".@xxxxxxx@.",
 ".@xxxxxxx@.",
 ".@xxxxxxx@.",
 ".@xxxxxxx@.",
 ".@xxxxxxx@.",
 ".@xxxxxxx@.",
 ".@xxxxxxx@.",
 ".@@@@@@@@@."};
 static Fl_Pixmap L_documentpixmap(L_document_xpm);

 // Assign user icons to tree items
 for (Fl_Tree_Item *item = tree->first(); item; item=item->next())
 // Assign custom icons
 item->usericon(item->has_children() ? &L_folderpixmap : &L_documentpixmap);
 //item->usericon(0); // Don't assign custom icons

 tree->redraw();
}

void tree_cb(Fl_Tree* w, void*){

 Fl_Tree *tree = (Fl_Tree*)w;
// Find item that was clicked

 Fl_Tree_Item *item = (Fl_Tree_Item*)tree->item_clicked();

 if (item->is_selected()) { //item is already selected
 } else { //click on additional item

 tree->select(item); // select this one too
 }
 AssignUserIcons(); //includes tree->redraw();
}

//Now the button callbacks for four buttons
void button_pathname_cb(Fl_Widget*){
 char pathname[256];
 Fl_Tree_Item *item = tree->first_selected_item();
 if (!item) { fl_message("No item was selected"); } else {
 tree->item_pathname(pathname, sizeof(pathname), item);
 fl_message("Pathname for '%s' is: \"%s\"", (item->label() ? item->label() : \

"???"), pathname);
 }
}
void button_copy_cb(Fl_Widget*){

char linetext[100];
for (Fl_Tree_Item *item = tree->first(); item; item = tree->next(item))
{
 if (item->is_selected()) {
 sprintf(linetext,"Item selected: '%s'\n", item->label());
 b->add(linetext);
 b->bottomline(32000); //always display the last line
 }

 }
}
void button_select_group_cb(Fl_Widget*){

Fl_Tree_Item *item = (Fl_Tree_Item*)tree->first_selected_item();
if (item->has_children()) {

tree->select_all(item);
tree->deselect(item,0); //do not select the folder itself

//2nd parameter=0 - no callback triggered
AssignUserIcons(); //includes tree->redraw();

} else {
fl_message("Please select just a folder first!");
return;

}
}

void button_deselect_cb(Fl_Widget*){
tree->deselect_all(0,0); //2nd parameter=0 - no callback triggered
AssignUserIcons(); //includes tree->redraw();

}

int main(int argc, char **argv)
{
 // Create tree and add items
 tree->add("Cars/Chevrolet");
 tree->add("Cars/Mercedes Benz");
 tree->add("Cars/Volvo");
 tree->add("Cars/Toyota");
 tree->add("Motorcycles/Harley Davidson");
 tree->add("Motorcycles/Honda");
 tree->add("Motorcycles/Suzuki");
 tree->close("/Motorcycles");

 tree->selectmode(FL_TREE_SELECT_MULTI); // Multiple Items
 tree->callback((Fl_Callback*)tree_cb);

 tree->end();

 //Create buttons and define callbacks
 Fl_Button *button_pathname = new Fl_Button(25,300,120,30,"Show pathname");
 button_pathname->color(FL_GREEN);
 button_pathname->callback(button_pathname_cb);

Fl_Button *button_select_group = new Fl_Button(180,300,120,30,"Select group");
 button_select_group->color(FL_GREEN);
 button_select_group->callback(button_select_group_cb);

 Fl_Button *button_copy = new Fl_Button(25,350,120,30,"Copy selected");
 button_copy->color(FL_GREEN);
 button_copy->callback(button_copy_cb);

 Fl_Button *button_deselect = new Fl_Button(180,350,120,30,"Deselect all");
 button_deselect->color(FL_GREEN);
 button_deselect->callback(button_deselect_cb);

 //Create browser window
 b = new Fl_Browser(340,25,260,355);
 b->type(FL_MULTI_BROWSER);

 win->end();

 // Display the window
 win->show();
 AssignUserIcons(); //includes tree->redraw();
 // Run and return
 return Fl::run();
}

The main window object, the tree widget object and the browser object are defined as
globals here to simplify access to them from the callback functions.

In the main function the tree widget is set up with the tree_cb as its callback. This callback
just allows to select several items simultaneously which is possible since the browser type
is set to FL_MULTI_BROWSER.

Then four buttons are defined with separate callbacks. The "Show pathname" button
callback retrieves the first selected item in the tree and then uses the item_pathname()
method to get its pathname which it then displays in a message window.

The "Copy selected" button callback walks in a loop through all items in the tree and if one
of them is selected it will copy that to the browser window.

The "Select group" button callback looks if the first selected item in the tree is a folder, i.e.
it has children, and if yes will select all items belonging to the folder. The folder item itself
will be deselected again in this example.

The "Deselect all" button callback uses the deselect_all() method to deselect all items in
the tree.

The AssignUserIcons function at the beginning of the code is frequently called in this
example. This is taken from the "Tree" example in the FLTK package. It defines two icons
using the XPM format and these will be added to the connector line depending whether it
is a folder or a file. Then it calls tree_redraw() to refresh the tree display. These icons just
make the tree look better, they are not required.

19. References

I read the following resources and got most of my knowledge from them.

a) Robert Artiletian's tutorial:

http://www3.telus.net/public/robark/

b) Greg Ercolano's FLTK Cheat page:

http://seriss.com/people/erco/fltk/

c) Tutorials on the National Taiwan University site:

http://graphics.csie.ntust.edu.tw/courses/index.php/Main/Tutorial

d) The FLTK manual:

http://www.fltk.org/doc-1.3/index.html

6th of March 2012 - Georg Potthast

http://www.fltk.org/doc-1.3/index.html
http://graphics.csie.ntust.edu.tw/courses/index.php/Main/Tutorial
http://seriss.com/people/erco/fltk/
http://www3.telus.net/public/robark/
http://www3.telus.net/public/robark/

